แนวคิดที่สำคัญที่สุดคือ ฟังก์ชันนั้นเป็น "กฎ" ที่กำหนด ผลลัพธ์โดยขึ้นกับสิ่งที่นำเข้ามา ต่อไปนี้เป็นตัวอย่างแต่ละคนจะมีสีที่ตนชอบ (แดง, ส้ม, เหลือง, เขียว, ฟ้า, น้ำเงิน, คราม หรือม่วง) สีที่ชอบเป็นฟังก์ชันของแต่ละคน เช่น จอห์นชอบสีแดง อ่านเพิ่มเติม
วันพุธที่ 11 กุมภาพันธ์ พ.ศ. 2558
นิยามอย่างเป็นรูปนัย
ความสัมพันธ์ระหว่าง กับ ซึ่งเป็นไปตามเงื่อนไข (1) นั่นคือฟังก์ชันหลายค่า ฟังก์ชันทุกฟังก์ชันเป็นฟังก์ชันหลายค่า แต่ฟังก์ชันหลายค่าไม่ทุกฟังก์ชันเป็นฟังก์ชัน ความสัมพันธ์ระหว่าง อ่านเพิ่มเติม
โดเมน, โคโดเมน และเรนจ์
X ซึ่งคือเซตข้อมูลนำเข้าเรียกว่า โดเมนของ f และ Y ซึ่งคือเซตของผลลัพธ์ที่เป็นไปได้ เรียกว่า โคโดเมน เรนจ์ของ f คือเซตของผลลัพธ์จริงๆ {f (x) : x ในโดเมน} อ่านเพิ่มเติม
ฟังก์ชันหนึ่งต่อหนึ่ง ฟังก์ชันทั่วถึง และฟังก์ชันหนึ่งต่อหนึ่งทั่วถึง
เราสามารถแบ่งฟังก์ชันตามลักษณะความสัมพันธ์ได้ดังนี้ฟังก์ชันหนึ่งต่อหนึ่ง (1-1) ฟังก์ชันจะคืนค่าที่ไม่เหมือนกันหากนำเข้าค่าคนละค่ากัน กล่าวคือ ถ้า x1 และ x2 เป็นสมาชิกของโดเมนของ f แล้ว f (x1) = f (x2) ก็ต่อเมื่อ x1 = x2อ่านเพิ่มเติม
ภาพ และบุพภาพ
ภาพ (image) ของ xโดยที่ x ∈ X ภายใต้ f คือผลลัพธ์ f (x)
ภาพของเซตย่อย A⊂X ภายใต้ f คือเซตย่อย Y ซึ่งมีนิยามดังนี้
- f[A] = {f (x) | x อยู่ใน A}อ่านเพิ่มเติม
กราฟของฟังก์ชัน
กราฟของฟังก์ชัน f คือเซตของคู่อันดับ (x, y (x)) ทั้งหมด สำหรับค่า x ทั้งหมดในโดเมน X มีทฤษฎีบทที่แสดงหรือพิสูจน์ง่ายมากเมื่อใช้กราฟ เช่น ทฤษฎีบทกราฟปิด ถ้า X และ Y เป็นเส้นจำนวนจริง แล้วนิยามนี้จะสอดคล้องกับแนวคิดของกราฟอ่านเพิ่มเติม
สมัครสมาชิก:
บทความ (Atom)